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Abstract: Rebuilding using outdated methods and tearing down the buildings would
have a negative impact on the environment without lowering carbon dioxide emissions
or increasing sustainability. This study presents a novel approach to repair that considers
environmental and sustainable factors. In contrast to conventional repair methods, the
use of Bacillus subtilis as an external biological repair technique could offer a novel and
sustainable solution, especially when used on alkali-activated slag (AAS) concrete. By
breaking down urea into carbonate and ammonium, alkaliphile bacteria can precipitate
calcium carbonate. In an environment rich in calcium, the bacteria’s opposing cell wall
(CO2−

3 ) draws in positive calcium anions, which result in the formation of calcite crystals.
The pores and crevices in the concrete are filled with these crystals. Incorporating bacteria
into the fresh mixing of AAS ingredients is contrasted with using Bacillus subtilis culture in
the water curing medium for pure AAS specimens. The effectiveness of both approaches
was evaluated. Direct administration of Bacillus subtilis during mixing has a superior
outcome regarding mechanical qualities rather than biological therapy, although their
effective healing capability in closure of the crack width is similar. The enhancement in
compressive and flexural strengths reached 51% and 128% over the control specimens.
On the other hand, the healing rate reached nearly 100% for crack widths ranging from
400 to 950 µm. Furthermore, additional studies in this field led to some inferred correlations
between the mechanical and durability aspects following healing.

Keywords: alkali-activated slag; self-healing; green construction materials; microbial-
induced calcium carbonate precipitation (MICP); bioremediation in concrete; microbial
concrete repair; durability enhancement

1. Introduction
Sustainability is an important aspect, especially with the new set of visions for 2030

and 2050. The repair with the old technique possesses waste even with these innovative
materials, such as FRP sheets, where the FRP sheets and steel pieces would be unused [1,2].
Another aspect that would be more appropriate is the demolishing of the structures that
do not maintain any safety and highly degraded concrete where the demolished wastes
would be hauled for disposal [1,2]. This action would be influential to the environment
by increasing the CO2 emissions and could not achieve sustainability. Kayan et al. [1]
explored low carbon repair techniques for maintaining the heritage structure St Paul’s
Church within the City of Melaka, Malaysia, based on the materials embodied carbon
expenditures. The results reveal that the most sustainable repair techniques are influenced
by the lifecycle span of the repair [1]. On the other hand, demolition is another complex
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process that has significant environmental implications through systematic tearing down,
which can possess waste that can pose serious environmental risks, contaminating soil
and groundwater and contributing to landfill use [2]. Besides its footprint, the dust forma-
tion contaminates natural spaces and communities, causing health issues and ecological
damage due to the vast material volume, which accounts for an energy-intensive 40% of
global energy consumption and resource use. Materials reuse and recycling or finding new
repair techniques preserve strategic materials that would otherwise be negligible. The envi-
ronmental and economic benefits of maintaining sustainability are reducing the demand
for new materials, conserving natural resources, and lowering the energy consumption
associated with manufacturing new products [2,3].

Unfortunately, the concrete’s low tensile strength is the first cause of concrete cracking.
Tensile stress could be induced through several means, such as excessive external loads,
temperature gradient, differential settlement, autogenous shrinkage, drying shrinkage,
plastic shrinkage, corrosion, and chemical attacks. Immediate response for crack treatment
is pivotal to avoid further crack propagation. Progressive cracking seriously impacts
long-term strength and durability [3–7]. Traditional repair is a complicated and resource-
consuming process requiring a periodic inspection test, special equipment, and skilled
labor. For instance, concrete bridge maintenance and rehabilitation costs reached 4 billion
dollars annually in 2014 [8], while 50% of the European annual construction cost is specified
for the repair and maintenance of the existing structures [5,6,9]. Another critical issue
regarding using traditional repair methods is cement usage [10]. Cement production has
prevalent environmental issues associated with subtial carbon dioxide gas (CO2) emissions.
This industry’s emission of CO2 represents around 12% of the global CO2 emission [11]. In
addition to the high consumption rate of natural resources, producing only one ton of OPC
consumes one ton of natural resources (lime) [8]. However, epoxy-based repair technology
has been widely adopted. Hazardous health problems associated with the produced fume
from the epoxy curing process have been reported [8].

On the other hand, the induction of tensile cracks has been indicated in the concrete
substrate area because of the different material characteristics [8]. Another challenge is the
crack inspection process, particularly for marine structures and tunnels where sophisticated
equipment is the only solution. This step may be followed by complicated procedures to
reach the inaccessible cracking areas [12]. Thus, it is necessary to introduce an innovative
and natural healing technique that can be activated with limited human intervention or
even without it [13].

Autogenous and autonomous self-healing technologies have been widely explored
within OPC-based concrete with promising results [5,6,14–17]. The microbial-induced
calcium carbonate precipitation (MICP) was proposed as a repair approach for healing
OPC cracks with reasonable widths up to 970 µm [18,19]. MICP is produced through
a subsequential biochemical reaction where urea is decomposed into carbonate (CO2−

3 )
and ammonium (NH+

4 ). The negative charge of the produced carbonate ions attracts the
positively charged calcium ions (Ca2+), forming the precipitation of calcite (CaCO3) at the
cell surface [14,20,21]. Recent advancements in biological repair techniques for concrete
have highlighted the potential of MICP as a sustainable solution for crack remediation.
Studies have demonstrated its efficiency in enhancing concrete durability and reducing
permeability through self-healing mechanisms [14,17,20,21]. Direct incorporation of bac-
teria into concrete during mixing has been a focus of research. It has presented several
challenges that limit its effectiveness and scalability. The lack of moisture and nutrients in
hardened concrete can cause bacterial spores to remain dormant. The second concern is that
incorporating bacteria directly during mixing can result in uneven distribution throughout
the concrete [14,20]. To overcome these challenges, limited research has investigated the
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external application of bacteria as an alternative repair approach. Van Tittelboom et al. [22]
compared repair techniques, such as epoxy, grout injection, and bacteria technology in OPC
concrete. The results proved that cement grouting only covered the surface without filling
the crack due to the large grain size of the grout. By contrast, epoxy and bacteria treatments
led to a complete filling. Bacterial treatment was almost as good as epoxy treatment for
cracks with a depth of less than 10 mm [22].

A further study performed by Prayuda et al. [23] showed that incorporating Bacillus
subtilis in the curing water for 28 days healed microcracks of OPC beams and restored the
flexural strength by about 93.63%. It is worth mentioning that aside from the crack healing,
the addition of bacteria improved the strength and durability of the whole composite. For
instance, Ramakrishnan et al. [24] reported an increase of 18% in the 28-day compressive
strength by adding Bacillus pasteurii to OPC concrete. Nosouhian et al. [25] stated a 20%
improvement in compressive strength with the addition of Bacillus subtilis when compared
with the control OPC concrete. The improvement in the compressive strength was ac-
companied by a 30% increase in the chloride resistance. Another type of Bacillus subtilis,
known as Bacillus sphaericus, was confirmed to positively influence compressive strength
by 36%, along with an improvement in the water absorption of the OPC mortar [18]. Balam
et al. [26] indicated that incorporating Sporosarcina pasteurii enhanced chloride resistance
by 34%. Despite the successful method followed by Prayuda et al. [23] for incorporat-
ing bacteria in the curing medium for OPC concrete repair, most researchers focused on
incorporating bacteria during the fresh concrete mixing. Additionally, using microbial
solutions as a crack repair technique was not previously addressed with alkali-activated
slag (AAS) systems. In this study, the slag has been selected as it does not require any
other treatment such as heat curing to elevate its activation like the one presented by the
fly ash. In addition, heat curing might not be the appropriate combination for the bacteria
to survive within media for further activation. Incorporating Bacillus subtilis in the curing
medium for external crack healing of AAS composites was evaluated in this study. The
evaluation occurred by examining the mechanical properties, durability, and microstructure
analysis. The assessment process involved comparing the influence of applying Bacillus
subtilis in the curing water and the influence of immobilizing bacteria during the fresh
mixing of the AAS mixture materials. This investigation is maintaining sustainability by
utilizing materials eco-friendly to the environment while searching for suitable techniques
of repair in the case of utilizing concrete-based AAS. This research effectively tackles key
challenges in AAS production and performance as well, and it represents a groundbreaking
contribution to the development of practical and sustainable solutions.

2. Experimental Program
2.1. Materials

Ground granulated slag with the chemical composition of SiO2 of 35.40%, CaO of
36.87%, and Al2O3 of 17.40% (see Table 1) was adopted in this study. The slag fineness was
4088 cm2/g, with a specific gravity of 2.80. The chemical modulus of this type of slag that
is represented in the summation of silicon oxides and calcium oxides is 72.27%, which is
greater than 70% alongside aluminum oxides less than 20%. Thus, this binder is considered
as moderately calcium oxide, as reported by Palomo et al. [3]. Upon activation, it could
produce a binding gel with appropriate strength and durability [3,4]. Consequently, slag
has emerged as a cement replacement in alkali-activated slag concretes, road bases, soil
stabilization, and precast products [3,4]. The activated alkaline activator was a blended
solution of sodium meta-silicate (Na2SiO3) and sodium hydroxide (NaOH). The percentages
of sodium oxide, silicon oxide, and water within the sodium silicate solution were 27%,
30.01%, and 59.72%. Sodium hydroxide solids (flakes) weights in the solution represented
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37.2%. The NaOH flakes were dissolved in water for 24 h before mixing for exothermic
heat release.

Table 1. Chemical composition of slag.

Oxides %

SiO2 35.40
CaO 36.87

Al2O3 17.40
MgO 6.83
MnO 0.26
Fe2O3 1.4
MnO 0.35
TiO2 0.11

S 0.24
L.O.I 0.50

Figure 1 represents the Bacillus subtilis culture prepared with the target cell concentra-
tion of 105 cells/mL. The alkaliphile Bacillus subtilis is a resilient spore-forming bacterium
with the ability to survive as spores. These spores remain dormant until cracks form and
moisture activates them, triggering calcite precipitation to heal cracks [27]. This type of
bacteria could survive within alkaline environments such as concrete, which has a high
pH (ranging from 12 to 13). The selection of Bacillus subtilis was attributed to their greater
resilience to alkaline conditions than other bacteria [27]. The microbial sample of Bacillus
subtilis was performed at the Faculty of Science of Al-Azhar University, Cairo, Egypt,
similar to those prepared by Shaaban et al. [17]. The Bacillus subtilis sample preparation
is summarized as follows: the bacteria were cultured in a formulation composed of 1%
tryptone, 0.5% yeast extract, 1% NaCl, and 1.5% agar. The second step was sterilizing all
glassware and instruments for 20 min, which was an important step to avoid contamination
by other species. The inoculation process included preserving bacteria for 24 h at 37 ◦C.
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Figure 1. Bacillus subtilis culture.

A spectrophotometer was used to determine the optical bacteria density required to
prepare a microbial culture of a cell concentration of 105 cells/mL. Subtilis absorbance was
determined through a qualitative procedure depending on measuring the optical density of
spore suspension at 600 nm (OD600). The germination process was checked every 24 h to
spot the OD600. A colony-forming unit per milliliter (CFU/mL) was used to determine the
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microbes’ growth rate. The OD and CFU/mL measurements were repeatedly recorded up
to 0.1 OD to spot the required concentration level. Table 2 indicates the main characteristics
of the microbial culture. It should be mentioned that the supernatant was then centrifuged
at 10,000 rpm at a pH of around 10.5 and the bacteria produced complied nearly with
those provided by B. subtilis strain 168 (ATCC, Manassas, VA, USA). The bacteria and
culture medium were prepared and tested for pH, etc., as mentioned earlier outside the
civil laboratory of the German University in Cairo, as shown in Figure 1.

Table 2. Bacillus subtilis culture characterization.

Characteristics of Bacillus subtilis Value

Growth medium 3
Incubation time 24 h

Subculture 30 days
Gram stain Positive

Shape Rod
Oxygen demand Facultative

2.2. AAS Mortar Manufacture

The manufacturing process started by blending the alkaline solutions. Sodium metasil-
icate solution was mixed with sodium hydroxide solution after 24 h of sodium hydroxide
solution preparation. The alkaline activators were added to specific water content based on
the liquid-to-solid ratio (L/S) involved in the mix design. The slag and the solution weights
were determined per the absolute volume method alongside the equations of modulus
silicates (Ms), alkali dosage (Na2O%), and L/S, as illustrated in Equations 1–4. According
to the Egyptian Code of Practice (ECP) [28], the ratio between slag and sand was kept to
1:3. The solid ingredients were adequately mixed for 3 min in a 5-L Hobart mixer. The
blended solutions were added gradually and mixed with the solid constituents for 2 min.
For the AAS mix with direct bacteria application during mixing (mix C-5), another 2 min
were considered upon adding the microbial culture.

Then, the prepared AAS mortar was poured into the metallic molds and de-molded
after 24 h. AAS specimens were subjected to air curing for 7 and 28 days, except the speci-
mens of mix C-5. These specimens were subjected to water curing to maintain microbial
survival [29]. Specimens were subjected to pre-cracking, evaluating the influence of bacteria
on the crack healing. Pre-cracking took place by applying a compression load of up to 85%
of the ultimate load [6,17]. Photo documentation was obtained to assess the damage and
healing amount. The cracked pure AAS specimens were subjected to water curing incorpo-
rating Bacillus subtilis culture with a cell concentration of 105 cells/mL. The AAS specimens
with the direct bacteria addition were immersed in pure water for 7 and 28 days during
mixing. Based on the literature [30–33], the bacteria cell concentration of 105 cells/mL had
the optimum influence on the mechanical and durability properties. For that, the concen-
tration of the adopted microbial culture was kept at 105 cells/mL. Figure 2 illustrates the
different techniques for the bacteria applications and curing conditions handled through
the flow chart, explaining the whole process adopted in the experimental program.

Slag
SGslag

+
Na2SiO3

SGNa2SiO3

+
NaOH

SGNaOH
+

H2O
SGH2O

= 1000 L − CA
SGCA

− FA
SGFA

(1)

where slag is the slag weight in kg; Na2SiO3 represents the sodium silicate content in kg;
the weight of sodium hydroxide in kg is indicated in NaOH; H2O shows the weight of
the water content in kg; CA and FA are the weights of coarse and fine aggregates in kg,
respectively; and SGx is the specific gravity of the corresponding material x.
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Na2O% =
Na2O% in NaOH + Na2O% in Na2SiO3

Mass of slag
(2)

Ms =
SiO2% in Na2SiO3

Na2O% in Na2SiO3 + Na2O in NaOH
(3)

L/S =
Water in all solutions

Slag + Na2O% solids + SiO2 solids
(4)

where Na2O% in NaOH and Na2O% in Na2SiO3 represent the percentages of sodium
oxide solids in the NaOH and Na2SiO3 solutions, respectively; SiO2% in Na2SiO3 is the
percentage of silicon oxide solids in the Na2SiO3 solution; water in all solutions is the water
percentage in the AAS mixture.
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Table 3 highlights the mix proportions adopted in the experimental program of this
investigation. Mix “C-A” refers to the pure AAS control mix with normal air curing
conditions; “C-5” indicates immobilizing bacteria directly during the fresh mixing and
using water curing conditions for bacteria activation. Incorporating Bacillus subtilis in
curing media for crack repair is presented in the mix “C-B.” After several laboratory trials,
the AAS mix was selected to reach an appropriate mix with proper compressive strength,
flowability, and setting time. The flow diameter and initial and final setting times of the
AAS mix were 100 mm and 82 and 180 min, respectively.

Table 3. Designated AAS mixes proportions.

Mix ID Slag
kg/m3

NaOH
kg/m3

Na2SiO3
kg/m3

H2O
kg/m3 Na2O% Ms L/B

Bacteria
Concentration

Cells/mL

Curing
Medium

C-A 387.40 60.45 82.81 81.61 8% 0.8 0.38 - Air
C-5 387.40 60.45 82.81 81.61 8% 0.8 0.38 105 Water
C-B 387.40 60.45 82.81 81.61 8% 0.8 0.38 - Bacteria

2.3. The Assessment Technique

Mechanical tests, mainly compressive and flexural strength tests, were conducted on
AAS specimens after 7 and 28 days. The compression and flexural tests were performed
using a Universal testing machine of capacity 2000 kN as per the specifications of ASTM
C109 [34] and ASTM C348 [35], respectively. Then, 40 mm-mortar cubes were compressed
at 240 kg/m3 per minute pacing rate. A three-point loading flexural test was applied on
mortar prisms of 40 × 40 × 160 mm with a loading rate of 50 N/s. The final recorded
strength was the average of three specimens from each mixture at the requested testing age.
The enhancement in compressive and flexural strengths was captured by the following
Equation (5) [36].
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Enhancement in compressive/flexural strength (%) =
σb − σc

σc
(5)

where σb is the compressive/flexural strength of microbial mortar samples and σc is the
compressive/flexural strength of control samples.

The durability properties, including water absorption, porosity, and chloride attack
resistance, were evaluated to check the bacteria’s effectiveness in precipitating calcite
crystals in the AAS specimens’ pores. Water absorption and porosity tests were carried out
at 28 days of age on cylindrical discs of 100 mm diameter and 50 mm thickness according
to ASTM C642-21 recommendations [37]. The Rapid Chloride Permeability Test (RCPT)
was performed based on the specifications of ASTM C1202 [38] and AASHTO–T277 [39] to
evaluate the chloride attack resistance. The test was initiated by inserting the cylindrical
specimen in a vacuum desiccator. A pressure of less than 6.65 kPa was maintained in this
phase for 3 h. Then, specimens were kept under de-aerated water in the RCPT cell for
182 h without allowing air access. After that, one end of the circular disc was immersed
in a 3% sodium chloride solution, while the other side was subjected to a 0.3 M sodium
hydroxide solution. Passing charges with 60 V were applied across the two ends. The
current passing through the specimens was determined at specific time intervals for 6 h.
The chloride resistance was evaluated based on the total charges computed in Coulombs.

For capturing the healing progress of the AAS specimens, whether they were directly
incorporating bacteria during mixing or being subjected to bacteria culture as a repair
technique, scanning electron microscopy (SEM) equipped with Energy Dispersive X-ray
analysis (EDX) was applied. Further, an X-ray diffraction test was performed to detect
the formation of the produced chemical compounds, specifically the calcium carbonate
crystals, as shown in Figure 3.
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Figure 3. AAS manufacturing process in its (a) fresh state, (b) hardened state in terms of AAS
specimens, and (c) pre-cracking cube specimen.

3. Results and Analysis
3.1. Compressive Strength

The results of the direct bacteria incorporation during fresh mixing (as in mix C-5)
showed a remarkable enhancement in the 28-day compressive strength that reached 51.28%
compared to the control mixture (C-A), as shown in Figure 4. This significant improvement
was attributed to the precipitation of calcite crystal within the internal pores and fissures of
the AAS composite [40] in mix C-5. The positive influence of incorporating bacteria on the
compressive strength of OPC was previously pointed out in several studies [17,25,27,41–46].
Some scholars tested the incorporation mechanism on the efficiency of the induced microbes
such as Sporosarcina pasteurii [47,48], Bacillus subtilis [24,27], Bacillus cohni [41], Bacillus
megaterium [42], and Shewanella [43]. The mentioned incorporation methods were direct
and indirect mechanisms. The direct mechanism means that the microbes are directly added
during mixing [17,25,47]. Upon direct addition, the reaction process tends to decrease the
viability of the bacteria cells. However, the spores-bacterial type could be provided as
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an efficient solution. Spore-bacterial type is a positive-gram alkali-resisting bacteria with
the ability to spore-form in an inactive form, which can be activated upon exposure to
water. The Bacillus family is an example of spore-forming bacteria [14,22]. The second
method depends on immobilizing the bacteria in another material called a carrier, such as
cement stone [41], zeolite [48], lightweight aggregate [27], and hydrogel [24]. Nevertheless,
a leakage of bacteria from the carrier has been reported in such cases. The influence of
incorporating different types of bacteria by adopting the direct and indirect mechanisms
on the compressive strength is shown in Figure 5. Both methodologies indicated a positive
effect on compressive strength, which figured out the intense microbiological activity
required to precipitate calcium carbonate within concrete under different conditions.
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Figure 5. The influence of different healing mechanisms/species as B. subtilis (Current study), S.
pasteurii [47,48], B. subtilis [24,27], B. cohnii [41], B. megaterium [42], Shewanella [43], and Epoxy [49] on
compressive strength. [24,27,41–43,47–49].

The adopted microbial suspension repair technique did not substantially change the
developed compressive strength after 7 or 28 days of curing. The compressive strength
was almost the same as that of the specimens cured 7 days in the air, which had a value of
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42.0 MPa. There was a slight increase in the 28-day compressive strength with an increment
of 6.6% for specimens cured in bacteria solution (increased from 45.9 MPa to 48.94 MPa).
The same observations were stated by Prayuda et al. [24], where the only increase in
compressive strength of OPC specimens cured in Bacillus subtilis suspension after 28 days
was limited to 2.1%. This behavior is attributed to exposing the external surface only of
specimens to the bacteria solution where the outer pores were filled with calcium carbonate
precipitation; however, the still internal matrix includes the pores generated through the
microcracks that occurred. Despite the slight increase in the compressive strength, this
mechanism achieved promising results compared to epoxy adhesives. Epoxy was reported
to adversely affect the concrete compressive strength [49,50]. Several parameters could
explain this observation; the first crucial point is the bond strength between the old concrete
and the adhesive material, where each material has different physical and mechanical
properties. The variation in the material’s characteristics causes differential shrinkage.
The new repair material undergoes early-age shrinkage, while the old composite has
already proceeded with this phase. Hence, the interface area has become easily subjected
to additional tensile stresses that reduce the resisting capacity [8]. Furthermore, the quick
setting time of the epoxy adhesive (15–30 min) and the fast-heating rate could highly affect
the resin’s viscosity and compressive strength. Consequently, Modesti et al. [49] reported
an average reduction in concrete’s ultimate compressive strength of 8.87%.

3.2. Flexural Strength

A considerable change in the flexural strength behavior was reported, where the
flexural strength improved by 143% and 128% for AAS specimens with direct bacteria
incorporation (C-5) after 7 and 28 days, respectively, compared to the air-curing specimens.
For the external bacteria curing, the enhancement in the flexural strength was recorded at
87.2% and 67.0% for 7 and 28 days, respectively, as shown in Figure 6. Flexural strength is
sensitive to the crack’s direction. Shrinkage cracks could propagate perpendicularly to the
flexural-induced tensile stress (transverse direction), reducing the localized resisting area
at the critical crack tips [44,51]. Unlike compressive strength, the influence of shrinkage
cracks is not profound due to the propagation direction in which the compressive cracks
are parallel to the shrinkage cracks. By healing these cracks, a significant enhancement was
recorded in the flexural strength due to filling the internal and external AAS micro-pores.
This phenomenon was realized by Fang et al. [51]. This behavior was found in harmony
with the findings reported by Reddy et al. [44], who compared the flexural strength of OPC
specimens cured in Bacillus subtilis solution with the corresponding specimens cured in
water, where the increase in the flexural strength was 67% after 28 days of curing.
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3.3. Relationship Between the Mechanical Properties

This section discussed a relationship between mechanical properties such as compres-
sive and flexural strengths after healing. Table 4 shows the flexural strength ratio for the
specimen after repair utilizing the healing bacteria in both cases relative to the compressive
strength. The ratio showed 9, 13.9, and 14.43% for the C-A, C-5, and B-C mixes at 28 days
of age. The ratios were also deduced at 7 days relevant to the compressive strength. The
values provided higher ratios than those 28 days. The ratios provided 8.82, 15.57, and
16.71%, respectively.

Table 4. Strength ratios of repaired AAS.

Mix ID
ft/fc (%)

7 Days 28 Days

C-A 8.82% 9.22%
C-5 15.57% 13.90%
B-C 16.71% 14.43%

Further investigation is required to predict the flexural strength relevant to compres-
sive strength enhancement. If the existing equations in the code and guidelines (Table 6
in [52]) were utilized, the square root of the compressive strength would be multiplied
by 1 or nearly 0.99 factors, which is not the case in Ordinary Portland Concrete. So, it is
imperative to maintain a predictive model for further correlating the flexural and compres-
sive strength and the elastic modulus of stiffness of the AAS to maintain the integrity and
check the repaired structural element soon. It is worth noting that the low coefficient of
determination is attributed to the sample size. The data size is an obstacle, but the idea of
visiting this area is very important for future work for investigation.

3.4. Water Absorption and Porosity

Water absorption and porosity evaluation are mainly correlated to pores within the
paste, the aggregate, and the interfacial transition zone (ITZ) between the paste and the
aggregate. These tests aimed to assess the calcite precipitation formation within the pores
or the cracks that appeared in the ITZ and/or the paste itself. The incorporation of direct
bacteria spores during mixing achieved better results of 42.0% and 32.1% improvement in
water absorption and porosity, respectively, compared to the external curing application.
The microbial solution curing technique enhanced the water absorption by 21.5% and the
porosity by 28.9%, as illustrated in Figure 7. Bacillus subtilis was proved to have the ability
to convert urea into ammonium and carbonate and promote the microbial deposition of
carbonate into calcium carbonate even when it was applied externally. These findings are
compatible with the literature [25,45–47,53]. Multiple studies focused on the influence of
incorporating bacteria on water absorption and porosity results [25,45,46,48,53]. The same
level of improvement was reported for immobilizing various types of bacteria, such as
Sporosarcina pasteurii [48] and Bacillus aerius [45], in OPC mortar. Figure 8a,b highlights the
induced microbes’ positive effect on improving OPC’s physical properties. The recorded
enhancement was between 15–46% and 14–55% for water absorption and porosity, respec-
tively [25,45,46,48,53]. For instance, Siddique et al. [46] reported a decrease in the water
absorption and porosity with direct inclusion of the ureolytic bacteria with a concentration
of 105 cells/mL by 23.1% and 16.9%, respectively. It is essential to mention that these stud-
ies considered only the direct microbe inclusion during the OPC mixing [25,45,46,48,53].
This study shed light on the applicability of externally applying bacteria to curing water.
Despite the lower effectiveness of this procedure, this could be a pivotal step for adopting a
novel biological repair technique. The ureolytic bacterial solution effectively enhanced the
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external surface, indicating calcium carbonate crystals forming on the external specimen
surface rather than the internal pores when the bacteria solution is in water curing.
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Figure 8. The influence of the healing agent B. subtilis (Current study) and other species on (a) water
absorption and (b) porosity [25,45,46,48,53].
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3.5. Rapid Chloride Permeability Test (RCPT)

Pore structure and porosity are among the crucial parameters controlling chloride
resistance behavior. Chloride ions could be easily transferred through more significant
pores. The narrower pore structure hinders the transportation of Cl− ions, increasing the
composite resistance. AAS systems are generally characterized by a high-fineness binder
with high calcium content that produces a denser pore structure. However, it is worth
pointing out that the pore solution of AAS systems activated by alkaline solutions is more
complicated than the OPC matrix due to more mobile ions Na+, OH−, and HS− [54–57].
This behavior is the main reason for the sudden stoppage while applying the RCPT test
on the other AAS specimens after 120 min for AAS mixes C-A and C-5. Excessive mobile
ions Na+, OH−, and HS− led to higher passages of the electric charges, reflecting false
results even in the C-5 specimens. This action was noted by multiple scholars, such as
Balcikanli and Ozbay [58] and Hu et al. [59], who confirmed that the accelerated electrical
conductivity recorded during the RCPT was due to the high concentration of the alkaline
activators. However, the number of passing charges dramatically decreased in the case of
C-5 compared to the reference specimens C-A. Some mobile ions were consumed during
the microbiological reactions, reducing the available free ions, and the charges passed,
reflecting lower penetration.

For the specimens cured in the microbial solution C-B, there was a significant im-
provement in the specimen’s chloride attack resistance. The first achievement was the
completion of the RCPT to reach the required 6 h of chloride resistance. The second was
that the number of passing electrical charges reduced significantly to 1214.78 Columbus
after 360 min with a corresponding current of 17 Amperes, as illustrated in Figure 9. Also, it
should be mentioned that Table 5 was added to provide values of Figure 9. Based on these
observations, the microbial-cured AAS specimens could be classified as a perfect material
resistant to chloride attack, according to ASTM C1202 [38]. The continuous submergence
of specimens in the microbial suspension led to better exposure of the outer surfaces to
the immobilized bacteria. This condition facilitated the biochemical ureolytic reactions,
microbial-induced calcium carbonate precipitations on the external pores, and shrinkage-
induced microcracks. By blocking the external pores and microcracks, the transmission of
mobile ions was hindered, reflecting lower passing electrical charges and lower chloride
conductivity. This behavior agrees with Tittelboom et al. [22] and Prayuda et al. [23], who
confirmed the effectiveness of applying microbial suspension as a curing regime for crack
repair in OPC concrete specimens. It is essential to mention that AAS is characterized by
its high chloride attack resistance, supported by multiple studies [57–59]. At the same time,
other types of tests (ponding tests) were performed. The RCPT’s misleading results in
testing the C-A and C-5 specimens emphasized the need for modifying RCPT to cope with
the nature of the AAS chemical composites.

Table 5. The RCPT values for the mixes.

T (min) 0 30 60 90 120 150 180 210 240 270 300 330 360

C-A
Q (c) 260 919 1908 3253

I (ma) 260 386 601 621

C-5
Q (c) 124 443 777 1080

I (ma) 138 177 185 168

C-B
Q (c) 88 291 512 730 862 946 1007 1056 1098 1135 1169 1200 1214

I (ma) 98 113 122 121 73 46 33 27 23 20 18 17 16
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Figure 9. RCPT results of mixtures C-A, C-5, and C-B.

3.6. XRD

The efficiency of the crack healing could be expressed through the production of
calcium carbonate precipitation. The recognized minerals of the three mixtures, including
the control mixture, are illustrated in Figure 10. Peaks of calcite were observed at many
angles for the AAS mixtures “C-5” and “ C-B.” These peaks indicate that the induced
microbes could precipitate CaCO3 crystals in both applications and undergo regular mi-
crobiological chemical reactions. Bacillus subtilis was capable of producing urease that
helped in converting (CO(NH2)2) into ammonium (NH+

4
)

and carbonate (CO2−
3 ) [14,60].

This step led to elevating the pH level and increasing the carbonate concentration. The
negatively charged carbonate ions produced from a series of biochemical ureolytic reac-
tions attracted the positively charged calcium ions. These chemical reactions led to the
formation of calcium carbonate (CaCO3) at the cell surface, as explained in the following
Equations (6)–(9) [15,60,61]:

CO(NH2)2 + H2O Urease→ NH2COOH + NH3 (6)

NH2COOH + H2O → NH3 + H2CO3 (7)

2NH3 + 2H2O ↔2NH+
4 + 2OH− (8)

2OH− + 2H2CO3 ↔ 2CO2−
3 + 2H2O (9)

Ca2+ + CO2−
3 → CaCO3 ↓ (10)

The calcite crystals filled the pores and the microcracks. Applying the bacterial
suspension as a curing medium for AAS specimens could be verified by detecting the
calcite compounds within the XRD of “C-B.” Thus, the bacteria confirm its ability to act as
a novel repair methodology and lay a solid foundation for presenting an environmentally
friendly technique. Instead of incorporating bacteria solution during the fresh mixing, it
could be applied externally in an efficient way to improve the external surface through
healing the micro-cracks and filling the AAS pores and fissures, preventing the penetration
of external attacks such as chlorides, carbon dioxide, and other hazardous substances to the
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concrete degradation and steel reinforcement. The perception of calcite and the formation
of different compounds such as sodalite, feldspar, and sodium alumino-silicate would
appear more in the SEM and EDX performed in the mineralogy analyses in the next section.
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3.7. Mineralogy Analyses Using SEM and EDX

The SEM image of the control AAS mix “C-A” revealed the propagation of the shrink-
age cracks within the alkali-activated composite. The volume instability property of AAS
systems was highly confirmed in this image. The finer pore size distribution of AAS
paste during nature and the complex hydration process increased the shrinkage vulnera-
bility by 2–4 times compared to OPC concrete [14,51]. The percentage of the mesopores
in AAS paste represents 74.0–82.0%, substantially higher than that in OPC paste, which
represents 24.7–36.4% mesopores. Thus, the capillary tensile stress is caused by the pore
distribution [60,62,63].

Furthermore, the lower Ca/Si ratio (1.1) in AAS concerning OPC paste Ca/Si ratio
of 2.0 results in a different and complex hydration process [60]. The complex hydration
process ends up incorporating alkali-metal ions produced by gel. After that, the presence
of the alkali metal weakens the arrangement regularity of the C-S-H gel and makes the
gel more susceptible to visco-elastic/visco-plastic characterization [14,60]. For the record,
the Ca/Si ratio of the mixes here in the study is 0.43, 1.92, and 0.78 for mix C-A, C-5,
and C-B, respectively. The ratio showed a low Ca/Si ratio (lower than 1.1), reflecting
a similar alignment with the explanation stated by Yang et al. [60], except for mix C-B,
which provided higher Ca due to the calcium carbonate perception possessed by the
bacteria. Consequently, a healing agent was significantly required in the case of the
alkali-activated systems. The SEM and EDX of the different ways of bacteria applications
reflected promising results where more compact and denser microstructures were detected
(Figure 11b,c) compared to the control mix (Figure 11a). Calcite crystals were observed
in the AAS mixtures embedded with bacteria. These crystals were confirmed by the EDX
analysis that revealed the existence of carbon atoms besides the calcium and oxygen atoms
in the chemical composition (see Figure 11b,c), which emphasized the formation of CaCO3

crystals. The SEM analysis agrees with those depicted by Jonkers et al. [41].
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Furthermore, it aligns with a study by Van Tittelboom et al. [22] on using Bacillus
sphaericus for OPC crack repair, which conformed to enhancing water absorption porosity
and strength properties. Therefore, the efficiency of the biological treatment was proved to
be applied to AAS composites as a natural and pollution-free repair mechanism.

3.8. Surface Morphology and Crack Healing

Using Bacillus subtilis as an external repair technique performed well in AAS surface
crack healing. The maximum healing crack width increased from 400 µm to 950 µm when
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compared to immobilizing bacteria in the AAS fresh mix. Bacillus subtilis appeared to have
the ability to perform microbial activities when used externally and precipitate calcium
carbonate filling in the cracking area and surface pores. Figure 12 depicts the effective
crack healing using Bacillus subtilis as a healing medium. The rate of healing seems to be
100 percentile in both cases of treatment, and this easily can be attributed to the calcite
precipitation on the face in the case of mix C-B, where the curing with bacteria takes
place, while direct inclusion of bacteria within the matrix would also possess the calcite
early and on the surface, as in mix C-5. It should be mentioned that the rate of healing
is calculated as mentioned by Mondal and Ghosh [36]. Hence, the durability properties
showed a considerable enhancement after bacterial suspension treatment. It was apparent
how chloride penetration was tested, where the rapid chloride test achieved superior results
for C-B specimens compared to water-cured specimens, which was attributed to external
pores and crack closure. These findings are consistent with previous studies [22,23] that
confirmed the capability of applying Bacillus subtilis and Bacillus sphaericus as biological
repair techniques. Microscopic photos are presented in Figure 12, capturing the progressive
self-healing process of AAS specimens subjected to bacteria curing, and binary images
show the cracks and their healing widths by filling the gaps.
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4. Limitations and Further Investigation
Using Bacillus subtilis can be a cost-effective solution due to its low cultivation require-

ments besides its ability to survive in dormant spore form for extended periods. Spores
are inexpensive to produce and store, reducing the cost of bacterial incorporation into
concrete compared to other biological methods such as encapsulation and hollow ves-
sels [14,20,29,64]. However, some points shall be taken into consideration. One of these
concerns is the long term, especially in dry or low-moisture areas. Moisture fluctuations
impact bacterial activation, as Bacillus subtilis requires water to transition from a spore to
an active form [29]. This could limit the self-healing potential of Bacillus subtilis in certain
climates. Changes in moisture and pH alongside nutrient availability could lead to uncon-
trolled bacterial growth in undesired places, such as places with no cracks [29,64,65]. High
pH can alter the enzymes’ conformation, influencing their activity. It is worth mentioning
that the pH level during concrete mixing is much more harsh for the bacteria (ranges from
12 to 13). Over time, this level declines to 9–10. The optimum pH range for Bacillus subtilis
is between 6.5 and 8.5. But endospores could withstand this harsh condition. For that,
Bacillus subtilis spores are recommended [64,65]. A further consideration is the scalability,
cost, and logistics of applying this technology uniformly across the entire structure [66].
Also, the predictability of the mechanical properties while using the bacteria seems to be
difficult due to the unpredictability of bacteria behavior, and the correlating compressive
and flexural strengths need to be investigated as they are not similar to those assigned by
codes or guidelines for further redesign and ensuring structural element integrity.

5. Conclusions
This study introduces an innovative approach to sustainable construction by proposing

a biological solution as a novel green repair technology. Integrating sustainable binders such
as slag and microorganisms leads the field into a new era of sustainable building materials.
Two different mechanisms of incorporating Bacillus subtilis were assessed in this study.
The first method directly incorporated microbe culture during the AAS mixing process,
representing the traditional method of immobilizing bacteria. The second was adding
bacteria into the curing media. The following points could be concluded based on this
experimental work that evaluated the mechanical properties, including the compressive
and flexural strengths, durability properties (water absorption, porosity, and chloride
resistance), and the microstructure behavior through applying SEM, EDX, and XRD:

1. The direct method achieved 49.7% and 128% improvement in the compressive and
flexural strengths. Utilizing bacteria culture in the curing medium for crack repair did
not highly enhance the compressive strength. However, the flexural strength increased
by 67%. The higher enhancement recorded in flexural strength was attributed to the
direction of shrinkage crack propagation, which was perpendicular to the flexural
tensile cracks.

2. The water absorption and porosity recorded enhanced results in both ways of bac-
teria application. Nevertheless, the enhancement increment was higher, with direct
bacteria incorporation recorded at 42.0% and 32.1% compared to the microbial cur-
ing specimens, with percentages of 21.5% and 28.9% for the water absorption and
porosity, respectively.

3. The microbial curing substantially improved the chloride resistance. It prolonged the
resistance time by up to 6 h with low chloride penetration, where the specimens were
classified as a perfect chloride-resistant composite, associated with the precipitation
of the microbial-induced calcium carbonate on the external pores and cracks, which
blocked mobile ion transmission.
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4. SEM, EDX, and XRD emphasized the high potential of Bacillus subtilis to precipitate
calcium carbonate in the AAS matrix when applied internally or externally.

5. Higher crack widths of healing were detected; the maximum healed crack width was
950 µm in microbial curing compared to 400 µm for the direct incorporation method.
Hence, it could be introduced as an effective biological repair methodology.

The study explains how the self-healing bacteria would represent a new technique
in treating cracks in the AAS, which is considered eco-friendly and would lead to more
sustainability than demolishing or other repairing techniques that involve using deposited
materials or removal of material that might create dust. The study also noted that the
circular economy assessment would be supportive when studying the material itself and
its reacting chemical component or mechanism of crack closure that could be initiated
biogenetically or using chemicals to regain the strength and close cracks that assist in
the protection of the building rather than any form of repair techniques and demolishing
of materials.

Author Contributions: N.H.: Data curation, Formal analysis, Investigation, Methodology, Project
administration, Resources, Software Programming, Validation, Visualization, Writing—original
draft, Writing—review and editing Preparation. A.E.-N.: Data curation, Investigation, Methodology,
Project administration, Resources, Software Programming, Supervision, Validation, Writing—review
and editing Preparation. I.G.S.: Data curation, Investigation, Methodology, Project administration,
Resources, Software Programming, Supervision, Validation, Writing—review and editing Preparation.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data will be made available upon request.

Acknowledgments: The authors would like to acknowledge the GUC Laboratory and the Technicians
for their support and effort in conducting the testing required.

Conflicts of Interest: The authors declare no conflicts of interest.

Nomenclature

AAS Alkali-activated slag
OPC Ordinary Portland cement
CaCO3 Calcium carbonate
Na2O% Alkali dosage
Ms. Modulus silicate
L/B Liquid to binder
SEM Spectroscopy electron microscope
EDX Energy dispersive X-ray
XRD X-ray diffraction
RCPT Rapid chloride permeability test
ASTM American Society for Testing Materials
ECP Egyptian Code of Practice
C-S-H Calcium silicate hydrates
C-S-A-H Calcium silicate aluminate hydrates
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